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Streaming Model

• Input: We assume there is an underlying frequency vector 𝑥 ∈ ℤ𝑛 ,
initialized to 0𝑛 

• Update: The stream consists of updates of the form (𝑖𝑡 , 𝑤𝑡),
meaning 𝑥𝑖𝑡

← 𝑥𝑖𝑡
+ 𝑤𝑡

• Output: Evaluation (or approximation) of 𝑓 𝑥  for a given function 𝑓

• Goal: Use space sublinear in the size 𝑛 and 𝑚 of the stream length



Streaming Model

• Insertion-Only model: when 𝑤𝑡 can only be positive

• Turnstile model: when 𝑤𝑡 can be both positive or negative



Linear Sketch

• Algorithm maintains 𝐴𝑥 for a matrix 𝐴 throughout the stream
• In the streaming model, the entries of A should be poly(n) bounded integers

• Easy to maintain under additive updates to coordinates of x

• The algorithm then outputs 𝑓(𝐴𝑥) for some post-processing function 𝑓

• All turnstile streaming algorithms on a sufficiently long stream might as 
well be linear sketches [LNW14, AHLW16]



Linear Sketch

• Lower bounds are fundamental to our understanding of the 
capabilities and limitations of streaming algorithms

• A popular method is to define two “hard” distribution 𝒟1 and 
𝒟2 that exhibit a desired gap for the problem of interest

• Then show 𝑑𝑇𝑉 𝐴𝑥, 𝐴𝑦  is small for 𝑥 ∼ 𝒟1 and y ∼ 𝒟2 when 
𝐴 has at most 𝑟 rows



Linear Sketch

• A simple example: consider the problem of estimating ||𝑥||2

• 𝒟1 ∼ 𝑁(0, 𝐼𝑛) for a Gaussian distribution with mean zero and identity 
covariance, and 𝒟2 ∼ 𝑁 0, 1 + 𝜀 𝐼𝑛  .

• Without loss of generality, assume 𝐴 has orthonormal rows

• If 𝑥 ∼ 𝒟1 , A𝑥 ∼ 𝑁(0, 𝐼𝑟) while if y ∼ 𝒟2 , A𝑦 ∼ 𝑁(0, (1 + 𝜀)𝐼𝑟) 

• Using standard results on the number of samples needed to 
distinguish two normal distributions: 𝑟 = Ω(log(1/𝛿) /𝜀2)



Linear Sketch

• These techniques imply lower bounds for:

• ℓ𝑝 estimation [GW18]

• Compressed sensing [PW11, PW13]

• Eigenvalue estimation and PSD testing [NSW22, PW23]
• Operator norm and Ky Fan norm [LW16]
• Norm estimation for adversarially robust streaming 

algorithms [HW13]

• The distributions 𝒟1 and 𝒟2 are often chosen to be multivariate 
Gaussians (or somewhat “near” Gaussian), to utilize rotational 
invariance



Linear Sketch

• Drawback of these lower bounds: they require the entries of the 
input vector 𝑥 to be real-valued as well
• This is inherent: if 𝑥 has entries with finite bit complexity, we could use 

large enough precision entries in A to exactly recover 𝑥 from A𝑥

• The streaming model is defined on a stream of additive updates 
to 𝑥 with finite precision

• These issues mean that none of the above lower bounds 
actually apply to the data stream model



Linear Sketch

• Idea: e.g., one could try to discretize the input distribution 
to the above problem

• Difficulty: the distribution is no longer rotationally invariant, 
and a priori it is not clear that information about the input 
is revealed by truncating low order bits

• Question: Is it possible to lift linear sketch lower bounds for 
continuous inputs to obtain linear sketch lower bounds for 
discrete inputs?



Adversarially Robust Streaming

• Input: Updates to an underlying vector x, which arrive 
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the dimension n of the input 𝑥

x1 ← x1 + 1 1

Estimate number of non-zero coordinates of x
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x1 ← x1 + 1
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x2 ←  x2  + 1 
x1 ← x1 + 1



Classic Insertion-Only Algorithms

• Space 𝑂
1

𝜀2 +log 𝑛  algorithm for ℓ0 [KNW10, Blasiok20] 

• Space 𝑂
1

𝜀2 log 𝑛  algorithm for ℓ𝑝 with 𝑝 ∈ 0, 2  [BDN17]

• Space 𝑂
1

𝜀2 𝑛1−2/𝑝 log2 𝑛  algorithm for ℓ𝑝 with 𝑝 > 2 

[Ganguly11,GW18]

• Space 𝑂
1

𝜀2 log 𝑛  algorithm for ℓ2-heavy hitters [BCINWW17]



Robust Insertion-Only Algorithms

• Space ෨𝑂
1

𝜀2 log 𝑛  algorithm for ℓ0

• Space ෨𝑂
1

𝜀2 log 𝑛  algorithm for ℓ𝑝 with 𝑝 ∈ 0, 2

• Space ෨𝑂
1

𝜀2 𝑛1−2/𝑝  algorithm for ℓ𝑝 with integer 𝑝 > 2

• Space ෨𝑂
1

𝜀2 log 𝑛  algorithm for 𝐿2-heavy hitters

• However, large gap between upper and lower bounds for turnstile 
streams: ෨𝑂 𝑛  upper bound, Ω 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛  lower bound.

“No losses* are necessary!”



Reconstruction Attack on Linear Sketches

• Linear sketches for ℓ𝑝 estimation (𝑝 > 0) are “not robust” to 
adversarial attacks, require Ω(𝑛) dimension [Hardt-Woodruff13] 

• Approximately learn sketch matrix 𝐴, then query 𝑥 ∈ 𝐾𝑒𝑟(𝐴) or 
𝑥 = 0𝑛 each with probability ½ 

• Iterative process, start with 𝑉1 = ∅, … , 𝑉𝑟

• Correlation finding: Find vectors weakly correlated with 𝐴 
orthogonal to 𝑉𝑖−1

• Boosting: Use these vectors to find strongly correlated vector 𝑣

• Progress: Set 𝑉𝑖 = span(𝑉𝑖−1, 𝑣)



Reconstruction Attack on Linear Sketches

• Attack randomly generates Gaussian vectors

• Analysis uses rotational invariance of Gaussians

• Attack ONLY works on real-valued inputs

• Question: Does there exist a sublinear space adversarially robust 𝐹2-
estimation linear sketch in a finite precision stream?

• Recently this was answered for linear sketches for ℓ0 in a finite precision 
stream [Gribelyuk-Lin-Woodruff-Yu-Zhou24]. Techniques specific to ℓ0 



We give a technique for lifting linear sketch lower bounds for 
continuous inputs to achieve linear sketch lower bounds for 
discrete inputs, thereby answering the above open questions



Discrete Gaussian Distribution
• Let 𝐷(0, 𝑆𝑇𝑆) be discrete Gaussian distribution with 0𝑛 mean 

and covariance 𝑆𝑇𝑆. Then the probability mass function satisfies

• Does not satisfy rotational invariance

• Also has a normalizing constant. For now, supported on ℤ𝑛

Pr
𝑋~𝐷 0,𝑆𝑇𝑆

𝑋 = 𝑥 ∝ exp −𝑥𝑇(2𝑆𝑇𝑆 −1𝑥)



Our Results (Lifting Framework)

Suppose that 
• 𝑋 ∼ 𝐷(0, 𝑆𝑇𝑆) and Y ∼ 𝑁(0, 𝑆𝑇𝑆), 𝑍 is an arbitrary integer 

distribution

•  𝑓 satisfies Pr
𝑥∼𝑋+𝑍,𝑦∼𝑌+𝑍

𝑓 𝑥 ≠ 𝑓 𝑦 ≤
𝛿

3
.

•  𝑔 𝐴𝑥 = 𝑓 𝑥  for 𝑥 ∼ 𝑋 + 𝑍 with probability at least 1 −
𝛿

3

• 𝐴 ∈ ℝ𝑟×𝑛 has polynomially-bounded integer entries and the 
singular value of 𝑆𝑇𝑆 is sufficiently large

Then there is another sketching matrix 𝐴′ ∈ ℝ4𝑟×𝑛 with estimator 
ℎ such that ℎ 𝐴′𝑦 = 𝑓 𝑦  w.p. 1 − 𝛿 for y ∼ 𝑌 + 𝑍



Example Problem (ℓ2 Estimation)

𝑓 𝑥 = ൞
0, 𝑥 2 ≤ 1 + 𝜖 𝑁

1, 𝑥 2 ≥ 1 + 3𝜖 𝑁
⊥, otherwise

• 𝑋1 ∼ 𝐷(0, 𝑁2𝐼𝑛) and 𝑋2 ∼ 𝐷(0, 1 + 4𝜖 2𝑁2𝐼𝑛)

• 𝑌1 ∼ 𝑁(0, 𝑁2𝐼𝑛) and 𝑌2 ∼ 𝑁(0, 1 + 4𝜖 2𝑁2𝐼𝑛)

𝑓 satisfies Pr
𝑥∼𝑋𝑖,𝑦∼𝑌𝑖

𝑓 𝑥 ≠ 𝑓 𝑦 ≤
𝛿

3



Example Problem (ℓ2 Estimation)

• Suppose there exists a 𝑔 𝐴𝑥  that can distinguish 𝑋1 and 
𝑋2 

• From our theorem, there exists ℎ 𝐴′𝑦  that can distinguish 
𝑌1 and 𝑌2 

• Then we can use the lower bound for the continuous case!



Our Results (Applications)

We apply our lifting technique to obtain optimal lower bounds:



Our Results (Adversarial Robustness)

• Let 𝐵 > 1 be any fixed desired accuracy parameter.

• Any adversarially robust streaming algorithm which uses a 
finite-precision linear sketch and 𝐵-approximates the 
ℓ𝑝 norm in a turnstile stream must use 𝑟 ≥ 𝑛 − 𝑂 log 𝐵𝑛  
rows.

• The adaptive attack uses poly(𝑟 log 𝑛) adaptive queries to the 
integer sketch and has runtime poly(𝑟 log 𝑛) across 𝑟 rounds of 
adaptivity and can be implemented in a polynomially-bounded 
turnstile stream.



(Very) High-level Proof Idea

• Essentially, we want to “simulate” continuous Gaussian queries using 
discrete Gaussian queries.

• Let 𝒟𝐿,𝑆 denote the discrete Gaussian distribution on support 𝐿 and 
with covariance matrix 𝑆𝑇𝑆.

• Let 𝑥 ∼ 𝒟ℤ𝑛, 𝑆 , 𝑦 ∼ 𝒟𝐴ℤ𝑛, 𝑆𝐴𝑇

• As in continuous case, we want to show  𝐝𝐓𝐕 𝐀𝐱, 𝐲  is small on 
support 𝐀ℤ𝐧.
• Lemma [Agarwal-Regev16]: this is true, under a certain condition for the 

orthogonal lattice to 𝐴!



(Very) High-level Idea

1. We design a pre-processing for the sketching matrix 𝐴, which can 
be applied without loss of generality, and satisfies the above 
condition. ➔ ensures that 𝐝𝐓𝐕 𝐀𝐱, 𝐲  is small on support 𝐀ℤ𝐧!

2. After applying the pre-processing on sketching matrix 𝐴, we show 
that 𝐴𝑥 + 𝜂 and 𝐴𝑔 are close in distribution, where 𝜂 is a uniform 
noise in the fundamental parallelepiped of the lattice induced by 
𝐴.

3. WLOG, assume algorithm sees 𝐴𝑥 + 𝜂, since algorithm can always 
round to recover 𝐴𝑥.



Future Directions

Attacks on linear-sketches 
for ℓ0 estimation on 
adversarial insertion-

deletion streams 

Attacks on streaming 
algorithms for ℓ0 

estimation on adversarial 
insertion-deletion streams 

Attacks on linear-sketches 
for ℓ𝑝 estimation on 
adversarial insertion-

deletion streams 

Attacks on streaming 
algorithms for ℓ𝑝 

estimation on adversarial 
insertion-deletion streams 

This work!
𝑟 = Ω(𝑛) optimal 
lower bound for 

ℓ𝑝 (𝑝 > 0)

𝑟 = Ω 𝑛𝑜 1  
dimension lower 

bound for ℓ0

[GLWYZ24]



Thank you for listening!
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